Concluding Remarks Stony Brook/ BNL ## **Eric Laenen** # Beautiful venue # Beautiful venue - Home of gauge theory - Yang-Mills theory, QCD, Standard Model, (Super) gravity - "Berkeley of the East" - academics, or ...? - A wonderful place for PhD student. Atmosphere fits here - (opening lecture) - open, many discussions, so much to learn, as at this meeting #### Overview ### 47 talks, XII sessions Very impressive new results, methods, ideas, codes... ## Broadening range of topics - MC, and NLO - QCD NLO/NNLO - QCD NLL/NNLL - **EW/Susy corrections, Higgs physics, New physics** - NLO codes/libraries - Factorization, EFT, SCET - PDF's, heavy flavors A reader's digest might be useful #### Overview ### 47 talks, XII sessions Very impressive new results, methods, ideas, codes... ## Broadening range of topics - MC, and NLO - QCD NLO/NNLO - QCD NLL/NNLL - **EW/Susy corrections, Higgs physics, New physics** - NLO codes/libraries - Factorization, EFT, SCET - PDF's, heavy flavors A reader's digest might be useful Common theme: particle scattering 16:05 NLO Corrections for High Multiplicity Jet Observables (25) Walter Giele (FNAL) 16:30 Concluding Remarks (25) Eric Laenen (Nikhef) At least here the Dutch are in the finals 16:05 NLO Corrections for High Multiplicity Jet Observables (25) Walter Giele (FNAL) 16:30 Concluding Remarks (25) Eric Laenen (Nikhef) At least here the Dutch are in the finals Slightly less popular, and less expensive scattering: ### LHC! Finally here! #### Mariotti - Steep learning curve for beam - focus now on getting nominal bunches → 10e32 - Physics at 20/nb - W's, Z's, jets, (lots of resonances), UE, diffraction - 3 tops/experiments? - Detectors well-understood, run at high efficiency - Data processing (Grid) going very well ## Tevatron! Still very much here! Wood - Тор - Vtb = 0.88 +- 0.07 - \blacksquare CDF I+jets: m(top) = 172.8 +- 1.2 GeV - = $\sigma(tT)$ normalized to DY, < 7% uncert. - ▶ EW - m(W) = 80.42 + 0.031 - dibosons - QCD - jets, jets+ - ► B_s - like-sign dimuon asymmetry in D0: 3.2σ - intermediate mass H → WW, first exclusion since LEP - light Higgs: ETmiss, b-tags, discriminant - Next machine, by global consensus - Must answer LHC questions - SM: Higgs, measure couplings with precision - BSM: characterize uniquely, in particular DM - For (Loopfest) theorists, primary mission accomplished - next: top MC, multi-jets - When, how much? - Urgency less felt - Cost comparable to LHC [less/year is more..] - Vincit qui in labore persistit #### **RDR vs ICFA Parameters** - E_{cm} adjustable from 200 500 GeV - Luminosity $\rightarrow \int Ldt = 500 \text{ fb}^{-1} \text{ in 4 years}$ - Ability to scan between 200 and 500 GeV - Energy stability and precision below 0.1% - Electron polarization of at least 80% - The machine must be upgradeable to 1 TeV Barish, ILC2010 ### You are here! ### You are here! #### You are here! ## Monte Carlo, parton showers - Check how well PS reproduces analytic resummation, e.g. pT of Z boson, depending on "shower time" - virtuality ordering: yes - angular ordering: ok, CS: no, kT: no - HERWIRI: YFS-exponentation based - v2.x this summer - POWHEG status - best of NLO and PS - many processes (bosons, heavy quarks, Higgs), soon with jets - POWHEG Box - √ easy inclusion of new processes - issue: data too secluded? Evolution in shower time Soper Yost VBF The state of ## W+t in MC@NLO Frixione, EL, Maltoni, Motylinski, Webber, White - In corrections to Wt, interference with much larger tT process - due to tT decay - Define MC subtraction - **2** ways, whose difference is interference - With cuts, allows Wt to exist as separate process to NLO - important as signal, and as background (to Higgs production) ### Listarchy - Ruled by NLO wishlist - what a marvellous invention - so much achieved in so little time - \checkmark many 2 \rightarrow 4 codes - √ by multiple groups! - new wishes voiced [Wood] - Challenge - experimenters must play with the new toys.. - .. or at least talk to us - public/user friendly codes | Process $(V \in \{Z, W, \gamma\})$ | Comments | |--|--| | Calculations completed since Les Houches 2005 | Comments | | 1. $pp o VV$ jet | WWjet completed by Dittmaier/Kallweit/Uwer [4,5];
Campbell/Ellis/Zanderighi [6]. | | 2. $pp o Higgs+2$ jets $3. \; pp o V \; V \; V$ | ZZjet completed by Binoth/Gleisberg/Karg/Kauer/Sanguinetti [7] NLO QCD to the gg channel completed by Campbell/Ellis/Zanderighi [8]; NLO QCD+EW to the VBF channel completed by Ciccolini/Denner/Dittmaier [9,10] ZZZ completed by Lazopoulos/Melnikov/Petriello [11] and WWZ by Hankele/Zeppenfeld [12] (see also Binoth/Ossola/Papadopoulos/Pittau [13]) | | 4. $pp ightarrow t ar{t} b ar{b}$
5. $pp ightarrow V$ +3 jets | relevant for $t\bar{t}H$ computed by Bredenstein/Denner/Dittmaier/Pozzorini [14,15] and Bevilacqua/Czakon/Papadopoulos/Pittau/Worek [16] calculated by the Blackhat/Sherpa [17] and Rocket [18] collaborations | | Calculations remaining from Les Houches 2005 | | | 6. $pp o t ar{t}$ +2jets
7. $pp o VV b ar{b}$,
8. $pp o VV$ +2jets | relevant for $t\bar{t}H$ computed by Bevilacqua/Czakon/Papadopoulos/Worek [19] relevant for VBF $\to H \to VV$, $t\bar{t}H$ relevant for VBF $\to H \to VV$ VBF contributions calculated by (Bozzi/)Jäger/Oleari/Zeppenfeld [20–22] | | NLO calculations added to list in 2007 | | | 9. $pp o bar{b}bar{b}$ | $qar{q}$ channel calculated by Golem collaboration [23] | | NLO calculations added to list in 2009 | | | 10. $pp \rightarrow V+4$ jets
11. $pp \rightarrow Wb\bar{b}j$
12. $pp \rightarrow t\bar{t}t\bar{t}$
Calculations beyond NLO added in 2007 | top pair production, various new physics signatures top, new physics signatures various new physics signatures | | 13. $gg \to W^*W^* \mathcal{O}(\alpha^2\alpha_s^3)$
14. NNLO $pp \to t\bar{t}$
15. NNLO to VBF and Z/γ +jet
Calculations including electroweak effects | backgrounds to Higgs
normalization of a benchmark process
Higgs couplings and SM benchmark | | 16. NNLO QCD+NLO EW for W/Z | precision calculation of a SM benchmark | ## One loop methods - ▶ Golem95: library of one-loop integrals - Numerically stable reduction of loop integrals - up to six point included, masses (complex) coming - upgrade to Golem-2.0 underway - √ does it all: graphs, reduction, evaluation - ▶ SAMURAI: also for one-loop integrals, - OPP method (unitarity, integrand) - any number/kind of legs. Masses included - tested, public #### Ossola ### Binoth Les Houches Accord In tribute to Thomas Binoth - So much of what was shown here came from him - Proposal by Thomas, at Les Houches 2009: - interfacing parton shower to NLO ## One loop, methods & results #### Complex internal masses - necessary when dealing with unstable particles (of which there are a lot) - Scalar integral basis required - fully general case (with divergences) now done. Dilogs galore. - New subtraction scheme for Nagy-Soper dipoles - less terms, easier matching to PS - number of processes checked, matching to PS next year? - NLO corrections to tT production and decay, and tT plus jet - shows use of D-dim unitarity and OPP, also here - checked #### Dittmaier Robens #### Schulze ## One loop results: $2 \rightarrow 4$ breathtaking alpinism - ▶ tTbb to NLO - 2 calculations (also Bevilacqua et al); agree - key background to ttH $(S/B \sim 0.1)$ - with better scale choice: - √ K-factor down to 1.25. But bkgd larger than LO by 2.2... - Methods used extraordinary arsenal of tools - Two independent codes by same team - have numerical efficient, stable code; 3 days on I CPU - √ together with Fat-Jets, bring top-Yukawa back in play - bbbb to NLO - on the list. For many BSM signals a background - virtual: Golem2.0 (10x faster with Samurai) real: MadDipole. #### NNLO methods and results #### Gehrmann - NNLO α_s from $e^+e^- \rightarrow 3$ jets (including event shapes) - combined with resummation - revisit hadronization, limit factor - Antenna subtractions for fully differential NNLO cross section for hadron scattering - always on horizon, but horizon now approaching - some initial state ones now known - √ tough integrations. - New set of subtractions - +: algorithmic, general, local, efficient -: very hard integrals [but need only once] - no hadronic collisions yet Boughezal Somogyi ### NNLO++, methods and results - NNLO DIS heavy quark coefficients Q² >> m² - for gluon, see PDFs, α_s precision - using factorization "backwards" - √ 3-loop massive Operator ME x coeffs - general N results @ Loopfest XI? - For light quark masses, part is PT - needs on-shell scheme, and conversion to MSbar - new on-shell scheme + NNLO conversion reduce (part of systematic) error by factor 3 - Precise charm and bottom masses - from comparing 4-loop current correlators with R(s) - $m_c(3 \text{ GeV}) = 986 (13) \text{ MeV}; <math>m_b(m_b) = 4163 (16) \text{ GeV}$ Sturm Maier $$m = \frac{1}{2} \left(\frac{9}{4} Q^2 - \frac{C_n}{M_n^{exp}} \right)^{1/2n}$$ ## NNLO Higgs production corrections - Gluon fusion, check of heavy top mass limit to NNLO - √ Use asymptotic expansion in I/Mt - ✓ Match to large s result - phew! Works still to better than 1%!! - √ Resummation rescues expansion - Vector boson fusion cross section to NNLO - √ at NLO, 5-10 % QCD uncertainty - √ at NNLO in QCD, in structure function approach, 2% (scale + PDF) - ✓ Web interface, just click Marzani Bolzoni #### **EW** corrections Germer - to neutrino-nucleon (for NuTeV) - now fully with muon and charm masses more information in distributions to squark/gluino pair production - effect on $\sin^2\theta_W$ most of (NuTeV World A) - PDF's? - Z+jets at LHC - part of Drell-Yan; background to BSM with E_T (miss) mostly small, but can be important (over 10%) - full NLO EW corrections, off-shell Z - O(10%) corrections - combine judiciously with QCD corrections for mw - use experimental template method fully in theory to assess effects of rad. cors. as mw shifts. Park #### Kasprzik # Susy-QCD corrections - Mostly, not small - to $gg \rightarrow H$ - √ With squark masses, decoupling holds - \rightarrow to h \rightarrow bb (use LE theorem for vertex diagrams). - ✓ Numerical effects: 8% - 3 loop MSSM corrections - **–** β function to 3 loops, 300K 3-loop diagrams!! - M_h to 3 loops. Result: still few GeV shift in M_h Muehlleitner Reisser Steinhauser ## Effective Field Theory (better than form factors) - New Physics, encoded in dim6 operators, and EW precision - reduce # from 80 to about 7 "oblique" ones, plus 2 or 3 "coupling" corrections - test using random generation of NP models. Works well. - Dim5,6 neutrino operators - difficult to constrain with LHC, LE observables - √ Red giants and high dim operator - New Physics in Higgs boson production - promising channel to look - generic model included into C, easily included in studies Csaki Wudka #### Furlan #### All orders - Can we fully understand the IR sensitive structure of gauge theory? Magnea - **T**ools: factorization, dim. reg., eikonal approximation - Amplitude (mostly) exponential. - Functional dependence of exponent has been surprising. - ✓ Severely constrained. Can we know it fully? Looks possible. - √ Four loops may tell - All-order radiative amplitudes sensitive to underlying "antenna". - E.g. new particle singlet or octet? Color/energy flow into selected phase space regions may tell - Massive gauge theory, exponentation ingredients to two-loop (NNLL) - Soft function at two-loop. Breaks "loop order scaling" - Applied to NNLL $\sigma(tT)$ [+other items] Mitov Sung ## Beyond the eikonal EL, Magnea, Stavenga, White Connected #### Amplitude as path integral $$S(p_1, \dots, p_n) = \int \mathcal{D}A_s^{\mu} H(x_1, \dots, x_n) e^{-ip_1 x_1} f_1(\infty) \dots e^{-ip_n x_n} f_n(\infty) e^{iS[A_s]}$$ $$f(\infty) = \int_{x(0)=0} \mathcal{D}x \, e^{i \int_0^\infty dt \left(\frac{1}{2}\dot{x}^2 + (p_f + \dot{x}) \cdot A(x_i + p_f t + x(t)) + \frac{i}{2}\partial \cdot A(x_i + p_f t + x)\right)}$$ #### Eikonal vertices act as sources for gauge bosons along path Disconnected QED: exponentiation now textbook result: all diagrams = exp (connected diagrams) QCD: same. Use "replica trick" from Stat Mech. Exponent = sum of webs: eikonal and new next-to-eikonal ones #### All orders - NLL threshold resummation for identified hadrons - excellent agreement at NLO, 10% resummed - when including leading lnN /N, even better - NNLL threshold resummation, for invariant mass distribution - scale dependence much smaller - also for NNLO piece of that #### Almeida #### Ferroglia # All orders, SCET #### **Tackmann** - How to implement jet vetoes in resummable way? - beam "thrust". No jets for thrust to one - requires factorization with beam functions. Can then resum (NNLL). - Low pT resummation of H,V - Compare with CSS: no Landau pole, easier matching to NLO - Application of SCET (with beam functions) - How to use EFT to derive what the "most convergent" scale choice is Bauer - for kinematical configurations, not just mass scales # Petriello 20.0 Pi H Pi? Pi N Pi? ### News from the Codes #### MCFM - H + 2 jets at NLO now in, using many "tricks" - √ Speedy (5ms/virt), reduction of H → WW error - tT at NLO, with spin correlations #### HelacNLO - went way beyond first ambition. Complete package. - tTbb, tTjj in. Poised for further speed improvements #### Blackhat - first glimpse of W+4j - W/Z + up to 3 jet, vs. Tevatron data Ita # News from the PDF's #### Heavy quark PDF's - careful, clarifying comparison of schemes ((S)-ACOT, TR, FONLL) performed - ACOT being extended to NNLO #### NNPDF 2.0 - MC the distribution the space of PDFs. Consistency, stability tests possible. - **2.1:** Heavy quark mass effects included #### CTEQ-TEA - LO PDF's for parton showers, fit μ and K to mimic NLO - = PDF's with variable α_s to let its value come out of global fit also Forte Nadolsky #### **News from Tools** - ► FORM: @sourceforge this summer - User Forum soon installed - New capabilities (factorization of multivariabe polynomials) - Future? Use the source! - ▶ GPU's: the future of speed - memory an issue (not easy for FORM eg) Vermaseren, Kuipers, Vollinga, Pushkina Giele # Looking ahead ("Vision thing") # Predictions, a list! - mostly LC - NLO parton showers, - postscript files Loopfest I [BNL] - Loopfest V [SLAC] - NLO 2 →3 - pMC@NLO (!) - PDF's standard - Loopfest IX [SB/BNL] - mostly LHC - NLO $2 \rightarrow 4,5$ - LHC NNLO arriving #### Loopfest XVIII [BNL/SB] - I. Higgs here, many studies - 2. Data driving calculations - 3. Fully automated 2 → 18 at NLO. (Point&click) [Feynman diagrams demise exaggerated] - 4. Fully differential $2 \rightarrow 3$ at NNLO - 5. $2 \rightarrow I$ at NNNLO, including splitting fns - 6. PS matched to NNLO - 7. IR structure gauge theory understood. Strong coupling results - 8. Much LHC, but ILC again! # Predictions, a list! #### Loopfest XVIII [BNL/SB] - Loopfest I [BNL] - mostly LC - NLO parton showers, - postscript files - Loopfest V [SLAC] - NLO 2 →3 - pMC@NLO (!) - PDF's standard - Loopfest IX [SB/BNL] - mostly LHC - NLO $2 \rightarrow 4,5$ - LHC NNLO arriving - I. Higgs here, many studies - 2. Data driving calculations - 3. Fully automated 2 → 18 at NLO. (Point&click) [Feynman diagrams demise exaggerated] - 4. Fully differential $2 \rightarrow 3$ at NNLO - 5. $2 \rightarrow 1$ at NNNLO, including splitting fns - 6. PS matched to NNLO - 7. IR structure gauge theory understood. Strong coupling results - 8. Much LHC, but ILC again! # More visions? # Vision Spectre, absent Eyjafjallajökull Quick quiz: explain this name 35 Ideal: to build tool that provides - Ideal: to build tool that provides - easy predictions for any process, for some finite orders, and with showers, or with resummation, with EW and QCD corrections - Ideal: to build tool that provides - easy predictions for any process, for some finite orders, and with showers, or with resummation, with EW and QCD corrections - what does that say about us? - Ideal: to build tool that provides - easy predictions for any process, for some finite orders, and with showers, or with resummation, with EW and QCD corrections - what does that say about us? - Long self-sacrifice - Ideal: to build tool that provides - easy predictions for any process, for some finite orders, and with showers, or with resummation, with EW and QCD corrections - what does that say about us? - Long self-sacrifice - ✓ Lemmings? - Ideal: to build tool that provides - easy predictions for any process, for some finite orders, and with showers, or with resummation, with EW and QCD corrections - what does that say about us? - Long self-sacrifice - ✓ Lemmings? - ✓ Charge of the Light Brigade? - Ideal: to build tool that provides - easy predictions for any process, for some finite orders, and with showers, or with resummation, with EW and QCD corrections - what does that say about us? - Long self-sacrifice - ✓ Lemmings? - √ Charge of the Light Brigade? - We just really want to know what makes the Standard Model tick - Extraordinarily impressive parade of new insights, methods, tools, codes, applications and results - Vital field: young people, new ideas, variety, competition - Extraordinarily impressive parade of new insights, methods, tools, codes, applications and results - Vital field: young people, new ideas, variety, competition - Progress not slowing down with complexity - Loopfest X has much to look forward to! (XVIII also) - Extraordinarily impressive parade of new insights, methods, tools, codes, applications and results - Vital field: young people, new ideas, variety, competition - Progress not slowing down with complexity - Loopfest X has much to look forward to! (XVIII also) - A big thanks, from all of us, to the organizers for such a wonderful and stimulating fest - ✓ Uli Baur - √ Sally Dawson - √ George Sterman - ✓ Doreen Wackeroth